skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dominguez, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evaporation-driven spontaneous capillary flow presents a promising approach for driving electrolytes through electrically charged channels and pores in electrokinetic energy conversion devices. However, there are no literature reports of detailed flow visualization in these systems and/or experimental observations relating the liquid velocity and evaporation rate to the generated voltage and current. In this manuscript, we describe such a visualization study for a glass channel based electrokinetic energy conversion device with one of its channel terminals left open to ambient air for facilitating the evaporation process. Fluorescence microscopy was used to measure the liquid velocity in the electrokinetic energy conversion channel by observing the advancement of an electrolyte solution dyed with a neutral tracer. The accumulation of the same dye tracer was also imaged at the open terminal of this glass conduit to estimate the rate of solvent evaporation, which was found to be consistent with the flow velocity measurements. Additionally, an electrochemical analyzer was employed to record the electrical voltage and current produced by the device under different operating conditions. The highest electrical power output was derived in our experiments upon flowing de-ionized water through a 1 μm deep channel, which also produced the fastest liquid velocity in it. Moreover, the energy conversion efficiency of our device was observed to increase for shallower channels and lower ionic strength electrolytes, consistent with previous literature reports on electrokinetic energy conversion platforms. 
    more » « less
  2. Abstract Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips. 
    more » « less
  3. The emergence of embedded magnetic random-access memory (MRAM) and its integration in mainstream semiconductor manufacturing technology have created an unprecedented opportunity for engineering computing systems with improved performance, energy efficiency, lower cost, and unconventional computing capabilities. While the initial interest in the existing generation of MRAM—which is based on the spin-transfer torque (STT) effect in ferromagnetic tunnel junctions—was driven by its nonvolatile data retention and lower cost of integration compared to embedded Flash (eFlash), the focus of MRAM research and development efforts is increasingly shifting toward alternative write mechanisms (beyond STT) and new materials (beyond ferromagnets) in recent years. This has been driven by the need for better speed vs density and speed vs endurance trade-offs to make MRAM applicable to a wider range of memory markets, as well as to utilize the potential of MRAM in various unconventional computing architectures that utilize the physics of nanoscale magnets. In this Perspective, we offer an overview of spin–orbit torque (SOT) as one of these beyond-STT write mechanisms for the MRAM devices. We discuss, specifically, the progress in developing SOT-MRAM devices with perpendicular magnetization. Starting from basic symmetry considerations, we discuss the requirement for an in-plane bias magnetic field which has hindered progress in developing practical SOT-MRAM devices. We then discuss several approaches based on structural, magnetic, and chiral symmetry-breaking that have been explored to overcome this limitation and realize bias-field-free SOT-MRAM devices with perpendicular magnetization. We also review the corresponding material- and device-level challenges in each case. We then present a perspective of the potential of these devices for computing and security applications beyond their use in the conventional memory hierarchy. 
    more » « less
  4. Abstract Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon‐based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon‐compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three‐terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter‐deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room‐temperature TMR effect. First‐principles calculations explain the TMR in terms of the momentum‐resolved spin‐dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes. 
    more » « less
  5. Abstract Magnetic random-access memory (MRAM) based on voltage-controlled magnetic anisotropy in magnetic tunnel junctions (MTJs) is a promising candidate for high-performance computing applications, due to its lower power consumption, higher bit density, and the ability to reduce the access transistor size when compared to conventional current-controlled spin-transfer torque MRAM. The key to realizing these advantages is to have a low MTJ switching voltage. Here, we report a perpendicular MTJ structure with a high voltage-controlled magnetic anisotropy coefficient ~130 fJ/Vm and high tunnel magnetoresistance exceeding 150%. Owing to the high voltage-controlled magnetic anisotropy coefficient, we demonstrate sub-nanosecond precessional switching of nanoscale MTJs with diameters of 50 and 70 nm, using a voltage lower than 1 V. We also show scaling of this switching mechanism down to 30 nm MTJs, with voltages close to 2 V. The results pave the path for the future development and application of voltage-controlled MRAMs and spintronic devices in emerging computing systems. 
    more » « less
  6. Abstract Tetherless sensors have long been positioned to enable next generation applications in biomedical, environmental, and industrial sectors. The main challenge in enabling these advancements is the realization of a device that is compact, robust over time, and highly efficient. This paper presents a tetherless optical tag which utilizes optical energy harvesting to realize scalable self-powered devices. Unlike previous demonstrations of optically coupled sensor nodes, the device presented here amplifies signals and encodes data on the same optical beam that provides its power. This optical interrogation modality results in a highly efficient data link. These optical tags support data rates up to 10 Mb/s with an energy consumption of ~ 3 pJ/bit. As a proof-of-concept application, the optical tag is combined with a spintronic microwave detector based on a magnetic tunnel junction (MTJ). We used this hybrid opto-spintronic system to perform self-powered transduction of RF waves at 1 GHz to optical frequencies at ~ 200 THz, while carrying an audio signal across (see Supplementary Data for audio files). 
    more » « less
  7. Abstract There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn 3 /Pt devices. A six-terminal double-cross device is constructed, with an IrMn 3 pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn 3 after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn 3 pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process. 
    more » « less